A role for the Kolliker-Fuse nucleus in cholinergic modulation of breathing at night during wakefulness and NREM sleep.
نویسندگان
چکیده
For many years, acetylcholine has been known to contribute to the control of breathing and sleep. To probe further the contributions of cholinergic rostral pontine systems in control of breathing, we designed this study to test the hypothesis that microdialysis (MD) of the muscarinic receptor antagonist atropine into the pontine respiratory group (PRG) would decrease breathing more in animals while awake than while in NREM sleep. In 16 goats, cannulas were bilaterally implanted into rostral pontine tegmental nuclei (n = 3), the lateral (n = 3) or medial (n = 4) parabrachial nuclei, or the Kölliker-Fuse nucleus (KFN; n = 6). After >2 wk of recovery from surgery, the goats were studied during a 45-min period of MD with mock cerebrospinal fluid (mCSF), followed by at least 30 min of recovery and a second 45-min period of MD with atropine. Unilateral and bilateral MD studies were completed during the day and at night. MD of atropine into the KFN at night decreased pulmonary ventilation and breathing frequency and increased inspiratory and expiratory time by 12-14% during both wakefulness and NREM sleep. However, during daytime studies, MD of atropine into the KFN had no effect on these variables. Unilateral and bilateral nighttime MD of atropine into the KFN increased levels of NREM sleep by 63 and 365%, respectively. MD during the day or at night into the other three pontine sites had minimal effects on any variable studied. Finally, compared with MD of mCSF, bilateral MD of atropine decreased levels of acetylcholine and choline in the effluent dialysis fluid. Our data support the concept that the KFN is a significant contributor to cholinergically modulated control of breathing and sleep.
منابع مشابه
Role of the thalamic parafascicular nucleus cholinergic system in the modulation of acute corneal nociception in rats
The present study investigated the effects of microinjections of acetylcholine (a cholinergic agonist), physostigmine (a cholinesterase inhibitor), atropine (an antagonist of muscarinic cholinergic receptors) and hexamethonium (an antagonist of nicotinic cholinergic receptors) into the parafascicular nucleus of thalamus on the acute corneal nociception in rats. Acute corneal nociception was ind...
متن کاملEffect of Reversible Inactivation of the Kolliker Fuse Nucleus on Basal Blood Pressure and Heart Rate in Anesthetized Rat
Introduction: Several supra spinal areas such as rostral ventrolateral medulla (RVLM) area are involved in basic cardiovascular regulation. The Kolliker— Fuse nucleus (KF) is located in pons and is heavily connected with RVLM. The cardiovascular effect of KF nucleus has been shown and it is suggested that KF is involved in sympathetic vasomotor tone and basic cardiovascular regulation. Therefor...
متن کاملGinseng Extract Regulates the Alterations of Sleep Architecture and EEG Power Spectra in Restraint Stressed Rats
The present investigation was conducted to evaluate the regulation of sleep architecture by the red ginseng water extract (RGE) in acutely and chronically restraint stressed rats. Adult rats were fitted with sleep–wake recording electrodes. Following post-surgical recovery, rats were extensively habituated for freely moving polygraphic recording conditions. Polygraphic signs of sleep-wake activ...
متن کاملRespiratory Physiology: Central Neural Control
State-dependent changes in breathing are caused by nonrespiratory (tonic) inputs to the brainstem systems that control ventilation. In wakefulness, tonic excitatory inputs include those from the reticular formation, brainstem aminergic systems, and hypothalamic orexin-containing neurons. In non-rapid eye movement (NREM) sleep, decrements in these excitatory inputs can explain the features of br...
متن کاملControl of sleep and wakefulness.
This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting sys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 109 1 شماره
صفحات -
تاریخ انتشار 2010